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1 Introduction

We have seen decades of growth in financial integration, both internationally and domesti-

cally. Lane and Milesi-Ferretti (2007) compile a dataset on the foreign assets and liabilities of

145 countries from 1970–2004. From 1998–2004 alone, the sum of countries’ external assets

and liabilities scaled by world GDP increased by nearly 50%. For industrial economies, this

growth in financial integration far outstrips the growth in trade integration. Focusing on the

US financial market, data from Furfine (2003) and the Federal Reserve H8 report show that

in 1997, 18.2% of all US commercial bank liabilities are to other US depository institutions.

Duarte and Jones (2017) improve this estimate by including all financial institutions and

balance sheet exposures, and find that in 2016, 22.9% of assets and 47.8% of liabilities of

bank holding companies come from within the US financial system.

The increasing interconnectedness of financial markets results in associated systemic risk,

due to greater interdependence in the financial system. Financial institutions are directly

exposed to one another through contractual claims in the interbank lending market, and

indirectly exposed through correlated portfolios. These exposures tie the financial health of

banks together, and when one bank experiences a shock, they serve as channels to transmit

this shock beyond the initially affected bank which results in greater losses in the financial

network. This transmission of shocks to other banks is known as financial contagion. In some

cases, the costs associated with one bank defaulting causes its counterparties to default as

well, causing a cascade of defaults in the financial system.

The empirical evidence supporting the presence of financial contagion is strong. As the

2008 financial crisis spread across global economy, post hoc analysis by Duarte and Jones

(2017) find empirical evidence of default spillovers in the United States in 2008–2012, after

the financial crisis. Fry et al. (2010) also find evidence of contagion in the real estate market

during the United States subprime crisis, and Luchtenberg and Vu (2015) find evidence of
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contagion from the United States and other developed economies as the financial crisis grew

in severity. This contagion effect is not unique to the 2008 financial crisis either. Kenourgios

et al. (2011) find evidence of contagion during the 1997 Asian financial crisis, the 1998

Russian financial crisis, the 2000 US dot-com bubble collapse, and the 2002 Brazilian crisis.

Given the existence and potential severity of financial contagion, we are interested in

further understanding contagion behaviour. In this paper, I review different theorised mech-

anisms for contagion, focusing on contagion through interbank lending and correlated port-

folios. I discuss the effect of interbank network topology and portfolio correlation structure

on likelihood and severity of contagion. I also discuss theoretical models of the formation of

interbank networks and correlation structures, backed by empirical evidence from real-world

financial markets. Finally, I develop a theoretical model to explain a stylised fact relating to

the relative risks of different mechanisms of contagion for different sizes of shocks.

2 Contagion in financial networks

2.1 Early models of contagion in financial systems

The earliest model of contagion and systemic risk in the financial system was pioneered by

Meltzer (1967), who attributed contagion in the financial system to information revelation

mechanism. In this model, depositors are assumed to have imperfect information about

both the solvency of banks and the government’s willingness to bail out troubled banks.

The failure of one bank without government intervention acts as a negative signal about

both the solvency of other banks in the system and the government’s willingness to support

banks in crisis. If the liquidity is low at other banks and this negative signal is strong enough,

this triggers a bank run in other banks.

Following this model, a rich literature studying financial contagion through information

was developed. Many empirical studies like those conducted by Aharony and Swary (1983),

Gay et al. (1991), and Peavy and Hempel (1988) were performed on major bank runs world-

wide. These event studies used the initial date of public disclosure of problems at banks

to analyse the effect of information-based contagion. If there is a significant drop in stock

prices of banks immediately after the date of disclosure, this is evidence for information-

based contagion. However, in a comprehensive review of this empirical literature, Kaufman

(1994) notes that in most cases, contagion does not spread beyond the specific product area

of the initial failed bank. He concludes that bank contagion through information is purely

a rational correction of depositors learning that similar banks are also insolvent, and hence

will not bring down solvent banks and the financial system.
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At the same time, other empirical studies conducted by Hasan and Dwyer (1994) and

Schoenmaker (1996) find evidence for contagion throughout the entire banking system, albeit

by using a different methodology. Using probit and autoregressive models, they find strong

intertemporal dependence in number of bank failures, even after controlling for macroeco-

nomic influences. Thus, when the experiment design is not limited to capturing information-

based contagion, we find evidence of system-wide contagion. This implies the existence of

other mechanisms besides information revelation, which can spread contagion throughout

the banking industry.

Subsequently, Rochet and Tirole (1996) initiated the theoretical study of the next al-

ternative mechanism of contagion in the banking system — interbank lending. In their

three-period model, banks are partitioned into two types: lending and borrowing banks.

Lending banks have a relatively large deposit base compared to the size of their investment

opportunities, while borrowing banks have a relatively small deposit base compared to the

size of their investment opportunities. Hence, in the first period, borrowing banks make risky

investments, while lending banks provide liquidity in exchange for claims on the investment

payoffs. In the second period, borrowing banks face a liquidity shock. If the borrowing bank

becomes insolvent, the bank fails and lending banks lose their claims. If the borrowing bank

stays solvent but is illiquid, they dilute the claims of lending banks to raise liquidity required

to withstand the liquidity shock. Otherwise, the lending bank receives the full payoff from

their claims.

Using this simple three-period model, they find that there is local interdependency, where

a bank is less likely to be liquidated if its debtors and creditors are not. They also find a

global interdependency, where as the liquidity shock that one bank faces increases, all other

banks are more likely to become insolvent, alluding to a contagion effect throughout the

entire banking system.

Although this model deals with systemic risks stemming from interbank lending, they are

limited to situations where banks are either borrowers or lenders, not both. This modelling

assumption allowed the authors to avoid cycles in the interbank lending network, which

simplified the clearing system of payments at the expense of realism in the model.

Building on this work, Eisenberg and Noe (2001) create the first model that explicitly

deals with the cyclical interdependence that characterises the banking system and creates an

algorithm to solve for the vector of payments in this cyclic system. This allows us to model

for bidirectional shocks, and aids us in studying the full contagion properties of the financial

network.
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Figure 1: A link in the financial network, where bank i owes Lij to bank j.

2.2 Interbank contagion in financial networks

The Eisenberg and Noe (2001) model begins with a set of rules that guide how firms in

default should behave. Specifically, they assume proportionate repayment of creditors, lim-

ited liability, and absolute priority of debt. Proportionate repayment implies that when a

bank defaults, its assets are split amongst creditors proportionally to their claims on the

bank. Limited liability implies that each bank will not be able to pay out more than the

total value of their assets. Absolute priority of debt implies that banks will pay off their

debts before providing dividends. They also assume that the banking system has positive

operating cash flow, implying that assets that are traded between banks are backed by real

deposit value from the outside. From these assumptions, they find that regardless of the

cyclic nature of the financial system, there exists a unique vector of payments that fulfils all

of these assumptions.

Here, financial institutions are represented as n nodes, and financial connections as an

n × n liabilities matrix L, where Lij ≥ 0 is the amount node i owes to node j as seen

in Figure 1 above, and Lii = 0 for all i. Banks receive an exogenous operating cash flow

ei ≥ 0, which is the value of their assets from outside the financial system. Bank i’s total

assets are hence
∑n

j=1 Lji + ei, and its liabilities are −
∑n

j=1 Lij, giving it a net worth of∑n
j=1 Lji + ei −

∑n
j=1 Lij.

They solve for the clearing vector using a fictitious default algorithm. They calculate the

liability that should be repaid by all firms from interbank loans. If all banks in the system

have a non-negative net worth, no bank defaults and the algorithm terminates. Otherwise,

we take banks with a negative net worth into our set of “first-order” defaulting banks. We

enter the next round assuming only this set of banks default, and calculate liability as such.

In the next round, if the algorithm does not terminate, this implies that additional banks

have defaulted. We add them to the set of defaulting banks to form a set of “second-order”

defaulting banks. Continue in this manner until no additional bank defaults in round k, even

when faced with a shortfall of payments from “k − 1 order” defaulting banks. This allows

us to calculate the vector of payments given (L, e), and the set of rules above.

The example in Figure 2 below illustrates the process. In the first round, the vector of

payments is represented by the links, where B has A has to pay 10 to B, B has to pay 20

to C and 10 to D, and C has to pay 15 to A and 5 to D. However, here, B has a net

worth of −15, and hence defaults. By proportionate repayment, B pays 10 to C and 5 to
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Figure 2: Eisenberg and Noe algorithm example, initial (L, e) on the left and final vector of
payments on the right.

D instead. This results in C having a net worth of −10, so it defaults, and the algorithm

does not terminate. By proportionate repayment, C pays 7.5 to A and 2.5 to B. But this

causes A to default, since it will have a net worth of −2.5. This results in only 7.5 being

paid to B, which implies that the net worth of B was actually −17.5, so we must continue

running the algorithm until we obtain our unique fixed point vector of payments. The vector

of payments in this example is A paying 5 to B, B paying 20
3
to C and 10

3
to D, and C paying

5 to A and 5
3
to D. Here, A, B and C defaulted, while D is the only surviving bank.

This Eisenberg and Noe (2001) model is the working model for most of the literature

to come. Other papers have since used links to represent other types of connections, like

cross-holding of shares on values of financial institutions as in Elliott et al. (2014), or joint

investments as in Erol and Vohra (2022). But fundamentally, the ability to model the

sequential default on complex interbank connections arising from one bank-specific shock

allowed for new literature pertaining to network topology, and network formation. They

also allowed us to come up with another mechanism of contagion, by extending their model

of the outside world. We continue by expanding more on these aspects.

2.3 Network topology affecting interbank contagion

The earliest theoretical model studying interbank lending network topology impacting con-

tagion was by Allen and Gale (2000). Their three-period model is similar to that of Rochet

and Tirole (1996). Here, banks are partitioned by region, and hold on to a short and a long

asset. They can liquidate their short assets at anytime, but liquidating their long asset in the

second period is so costly that provides little additional liquidity. Banks must meet demand

for liquidity from consumers in their region over all periods to avoid defaulting. There are

two types of consumers: early consumers, who will withdraw their deposits in the second

period, and late consumers, who withdraw their assets in the third period. The proportion

of early and late consumers in each region is random.
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This incentivises banks to exchange deposits in the first period as a form of insurance

against liquidity shocks. To see this, let the banks in region A and B exchange deposits in the

first period. In the second period, suppose region A has a higher than average amount of early

consumers, and region B has a lower than average amount of early consumers. Then, the

banks in region A can meet their greater demand for liquidity by liquidating their deposits in

region B, which also benefits region B as they had an excess supply of the short asset. In the

third period, this cross-holding of assets also benefits region B, since they can liquidate their

deposits in region A to meet their greater demand for liquidity from late customers. Hence,

banks in both regions benefit from the exchange of deposits in the first period. Extending

this argument, the more regions that a bank has deposits in, the lower the probability that

all regions it is financially linked to will experience a liquidity shock simultaneously. Hence,

the more financial links to different regions a bank has, the less susceptible it is to liquidity

shocks. This implies that the complete network is the least susceptible to small liquidity

shocks.

However, there are also negative effects of insurance through interbank deposits. Suppose

that banks in region A have excess demand for liquidity in the second period that cannot be

paid back even by liquidating all their short and long assets, and are hence bankrupt. Then,

in the second period, banks in region A will be unable to pay back their liabilities, including

interbank deposits from banks in other regions. This results in a spillover effect, since banks

who hold deposits in region A will see a drop in liquidity supply. If this spillover effect is

severe enough, this might cause neighbouring banks to go bankrupt as well. This can set off

a chain of bankruptcies, and the shock can spread to the entire connected component that

contains region A’s banks. This implies that incomplete networks that do not have large

connected components are the least susceptible to large liquidity shocks.

We see that when interbank deposits serve as insurance against liquidity shocks, greater

interconnectedness as characterised by a larger number of neighbours allows for greater risk-

sharing in financial networks. Although banks subject to the initial shock might fail, losses

resulting from the shortfall in assets is borne by the entire economy instead of concentrated

over a small number of neighbours. However, when the shock is sufficiently large, bigger

connected components result in these connections propagating the shocks beyond the initially

affected banks. This is known as the “robust-yet-fragile” property, coined by Haldane (2009).

Other authors have since restricted to different classes of networks to identify analytically

and using simulations the network structures that are most and least susceptible to conta-

gion. Other than approximately regular networks, a commonly studied class of networks

has a “core-periphery structure”. This is characterised by highly interconnected large “core”

banks, and less-connected small “periphery” banks, which has been empirically observed in
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many real-world financial networks. This structure has been found in the German interbank

market by Craig and von Peter (2014), the Austrian interbank market by Boss et al. (2004),

the US interbank market by Soramäki et al. (2007) and Fricke and Lux (2015), the Italian

interbank market by Iori et al. (2008), and the Brazilian interbank market by Silva et al.

(2016).

Acemoglu et al. (2015) analysed the effect of liquidity shocks on regular network struc-

tures of banks with identical assets and liabilities. They define network performance by the

social surplus in the economy, equal to the net worth of surviving banks plus liquidation

value of defaulted banks. They find that if the shock is below a threshold, the complete

network has the best expected and worst-case performance of any regular network, while

the ring network has the worst expected and worst-case performance. On the other hand, if

the shock is large enough, both the complete and ring network have the worst expected and

worst-case performance. Instead, they define a δ-connected network as a regular network

where there exists subset of banks S such that for any two banks i ∈ S and j /∈ S, the

proportion of each bank’s total liabilities to the other are at most δ ∈ [0, 1]. This implies

that banks in S are weakly connected to the rest of the network, and they find that for δ

small enough, any δ-connected financial network has better expected and worst-case perfor-

mance than the complete and ring networks. These results are consistent with Allen and

Gale (2000), where for small shocks, the complete network performs the best, while for large

shocks, networks with small connected components perform the best.

Gai et al. (2011) studied the effect of a randomly distributed small liquidity shock on

2 kinds of random network configurations: the Poisson configuration, where edges are ap-

proximately evenly distributed between all banks, and the geometric configuration, which

has fat tails resulting in a natural core-periphery structure. When a small shock occurs, the

affected bank withdraws interbank assets from its neighbours to stay liquid. Depending on

the affected bank’s withdrawal patterns, this can result in its neighbours facing a liquidity

shock as well, and propagate throughout the system. Their Poisson simulations show that

at low and high levels of connectivity, probability of contagion is low, while at intermediate

levels of connectivity, probability of contagion is almost 1. At low levels of connectivity, the

network is comprised of small connected components, so contagion cannot spread beyond

this. At high levels of connectivity, each bank has a high degree, so the risk-sharing effects

of financial connections make initial shock transmission unlikely. However, at intermediate

levels of connectivity, the network is comprised of large connected components with a low

average degree. Here, contagion is not limited by the size of the connected component or

risk-sharing effects attenuating the initial shock, so probability of contagion rises sharply.

Their geometric simulations show a similar non-monotonic trend of increasing then decreas-
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ing probability of contagion as connectivity increases. However, the geometric simulation

has a lower probability of contagion at low connectivity than the Poisson simulation. The

geometric simulation also requires a higher connectivity threshold before probability of con-

tagion becomes a tail-event. Additionally, targeting the most connected bank for the initial

shock has little effect on the Poisson network. However, it results in the probability of con-

tagion in the geometric network being close to 1 for most intermediate levels of connectivity,

since its core-periphery structure results in the most connected bank being able to propagate

the shock extremely far. Thus, we can conclude that network structures with greater con-

centration but low connectivity and networks with lower concentration but high connectivity

perform well. The first kind of network is akin to a cluster graph comprised of small cliques,

while the second kind of graph is akin to a complete network, consistent with Allen and Gale

(2000).

Elliott et al. (2014) studied the effects of integration and diversification of random net-

works on the contagion that results from one bank’s asset failing at random. Here, each bank

has a proprietary asset, and links are used to represent cross-holding of shares on values of

financial institutions. Higher integration is defined as a greater proportion of shares held by

other banks, while greater diversification is defined as a greater number of other banks that

holds these shares. Both analytically and with simulations, they find that intermediate levels

of integration and diversification result in the worst outcome, characterised by the existence

of large connected components with a low average degree. They find that greater integration

and diversification results in less frequent contagion, since a drop in the bank’s own asset

value is less likely to trigger a bank failure, characteristic of the complete network. They

also find that little integration and diversification results in less contagion, since the cascade

is limited to a small connected component. Studying a core-periphery random network,

they find a similar pattern to Gai et al. (2011), where targeted shocks to the core result in

significant contagion, but shocks to the periphery have little contagion when integration to

the core is sufficiently high.

Sui et al. (2020) examined the effect of various network parameters on financial contagion

in the core-periphery network. They find that increasing the size of core banks results in

a larger phase transition, where the network is more resilient to liquidity shocks in general,

but a targeted liquidity shock to a core bank is more likely to result in contagion. Increasing

the number of core banks and periphery banks have the same effect. They also find that

with a large number of core banks, periphery banks that increase interconnectedness reduce

the fragility of the network, and the opposite is true for a small number of core banks.

We can see that there is plentiful theoretical evidence for the robust-yet-fragile property.

Overall, we find that for small shocks, greater network interconnectedness in both average
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degree and size of components results in less contagion. For large shocks, reducing the

average size of connected components results in less contagion. The core-periphery structure

results in increased resilience of the network as long as the initial shock is not targeted at a

core bank. However, Cabrales et al. (2017) finds that depending on the distribution of the

size of shocks, different densities and number of components become optimal, so without

knowing the distribution of shocks to banks ex-ante, we are unable to conclude which is the

network structure that minimises contagion.

Beyond simulation studies, there are little empirical analyses on the effect of interbank

lending network structures on contagion. We know that estimations of the network structure

can be obtained through techniques like local entropy maximisation, pioneered by Upper and

Worms (2004), which are sufficient to conclude a core-periphery structure in the interbank

network. However, Craig and von Peter (2014) finds that this aggregated network structure

remains relatively stable, even in periods of financial crisis. Exact data on interbank lending

is often only available to the central bank and other regulators, so it is impossible to use

small shifts in the network structure to infer larger contagion properties. There is also

significant heterogeneity between interbank markets of different countries as shown by Allen

et al. (2020), so cross-country comparisons are rendered ineffective.

2.4 Interbank lending network formation

As mentioned in Section 2.3, the network structure that most commonly appears in real-

world financial markets is the “core periphery” structure. Following this empirical finding,

there are multiple theoretical models which endogenously account for the formation of these

core-periphery networks. They posit that there are benefits of the existence of a path between

two banks, but the formation of links is costly. This results in the stability of a network

where a core clique acts as intermediaries to a connected periphery, since this network has a

large connected component without the associated costs of having too many edges.

in ’t Veld et al. (2020) examined the relationship between trade access by intermediation

and the endogenous formation of stable core-periphery structures. They characterise core-

periphery networks has having a core bank clique which is fully connected, and a periphery

bank independent set which has no pairwise connections. In their two-period model, costly

undirected links between banks are formed in the first period, representing the existence

of a trading relationship. In the second period, banks are able to trade through these

previously-established relationships. Any two banks which are connected, either directly or

indirectly through intermediaries, are able to trade. Surplus from trade between two banks is

split between the trading banks and their intermediaries, based on the level of competition
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amongst intermediaries. If there is perfect competition amongst intermediaries, the two

trading banks split the full trade surplus. If the intermediaries collude instead, they obtain

some positive trade surplus equally divided amongst themselves, and the trading banks have

a smaller trade surplus.

In the homogeneous case, they assume that all trades between banks result in the same

trade surplus. With this assumption, they find that the core-periphery structure is not

always unilaterally stable, meaning that there exists a coalition with incentives to deviate.

This incentive to deviate arises in two situations. The first is when one core bank’s neighbours

are a subset of another core bank’s neighbours. Then, the latter core bank does not gain

paths to new periphery banks by connecting to the former core bank, and there is incentive

to sever this link. The second situation is when there are many periphery banks. For a large

enough number of periphery banks, one periphery bank will have an incentive to deviate

and enter the core to profit from intermediation benefits. They also simulate a dynamic

model which begins with an empty graph and allows banks to deviate to their best response

consecutively. They find that for no values of level of competition between intermediaries

and cost of maintaining links does the dynamic model converge to a core-periphery network.

In the heterogeneous case, they assume two types of banks, big and small, and model that

the trade surplus is split between banks proportionately to their size. With this assumption,

given that forming links is sufficiently costly and the trade surplus difference between small

and big banks is sufficiently large, the core-periphery structure is unilaterally stable. They

modify the dynamic model above, still assuming ex ante homogeneity, but allowing banks to

reinvest their trade surplus into growing the size of the bank. They find that this updating of

bank sizes endogenously creates of heterogeneity in bank sizes, and results in convergence to

the core-periphery network for a large range of link costs and intermediary competition levels.

This illustrates a possible model of network formation leading to core periphery networks

even without ex ante assumptions of heterogeneity. This mechanism is further supported by

the fact that empirical evidence from Section 2.3 shows that core banks tend to be large.

Babus and Hu (2017) study another mechanism, where revealed information of neigh-

bours’ actions influences network formation. In their model, banks are evenly divided into

borrowing or lending banks at the beginning of each period. Each borrowing bank is paired

with a random lending bank, and they can trade with one another. However, there is limited

commitment, so banks can renege on liabilities at the end of the period. Furthermore, banks

are situated in an information network, and costly links between banks represent bilateral

monitoring. Without a link between the two banks, the lending bank is unable to observe

the borrowing bank’s history of fulfilling contracts. Given these limitations, banks will only

utilise self-enforcing contracts, where a path of intermediaries between the lending and bor-
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rowing bank can provide credible threats which induce repayment. With a large enough

network, trade can only be sustained with intermediaries. However, these intermediaries

must be compensated sufficiently to ensure they have no incentive to keep repayments for

themselves. In this context, the constrained efficient and stable network structure is the

star network, which is an extreme example of a core-periphery network with only 1 core

agent. To see this, note that intermediation increases trade and repayment, which increases

social welfare. Since each intermediary must be compensated, minimising the number of

intermediaries required increases the number of possible trades. However, due to the cost

of maintaining links, we also want to minimise number of links. The star network is the

acyclic connected graph which minimises the distance between each pair of nodes. When a

star network is achieved, no agent has an incentive to deviate given that link costs are small

and number of banks is large. Hence, intermediation can result in the formation of a stable

core-periphery network without any form of heterogeneity.

Farboodi (2023) builds upon the previous model by accounting for asymmetric relation-

ships in the interbank market, while assuming perfect information. In their three-period

model, they account for asymmetric relationships by fixing the set of borrowing and lending

banks. Borrowing banks have a probability of being assigned risky investment opportunities

in the second period, while lending banks will never be assigned investment opportunities. In

the first period, banks commit to interbank contracts, where creditors commit to providing

funding to debtors given that the creditor has no investment opportunity, and the debtor

has an investment opportunity either directly or through intermediaries. Notice that bor-

rowing banks are most able to obtain loans in the first period, since they might have access

to risky investment opportunities in the second period, and can provide a higher expected

return to lenders. Furthermore, since having a long chain of intermediaries is costly, lending

banks prefer to be connected directly to a borrowing bank which is connected to every other

borrowing bank. Thus, when payoffs from intermediation are sufficiently high, borrowing

banks are incentivised to intermediate and bear the costs of defaults when risky investments

do not pay off. This creates the core-periphery structure, where borrowing banks form the

intermediary core and lending banks form the periphery. However, this structure is inef-

ficient, since borrowing banks have an incentive to overconnect to other borrowing banks,

resulting in very high default risks which could be otherwise avoided if a lending bank was

the intermediary.

Overall, we see that heterogeneity is a key part of the formation of core-periphery struc-

tures, whether in bank size, access to information, or access to investments. This results in

different payoff structures for banks in the core and banks in the periphery, which allows

the core-periphery structure to be the stable equilibrium. Even when banks are assumed
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homogeneous at the outset, this heterogeneity can arise through the best response dynamics

of banks in the system.

3 Outside assets and correlated portfolios

The previous sections deal with shocks to banks in a black box, modelled as exogenous

changes to consumer liquidity demand, changes in value of external assets, or realisations

of returns to risky investments. These shocks represent changes in banks’ operating cash

flow as modelled by Eisenberg and Noe (2001), which induces changes in banks’ net worth.

Glasserman and Young (2016) make this explicit by introducing the concept of an “outside”

sector with a representative node. The links between this outside sector node and banks in

the network can be seen as banks borrowing to and lending from non-financial institutions,

which is the basis of their real deposit value from which they can engage in interbank lending.

We are interested in studying this outside sector for multiple reasons. Firstly, this outside

sector is where shocks to banks originate from. Secondly, a large proportion of bank assets

are held in this outside sector. Allen et al. (2020) studied the average ratio of interbank

loans to total bank assets for banks in the Euro Area and in the US. They find that for all

countries, <30% of banks assets are from interbank loans, while the other >70% are external

assets, with the US having only 2.4% of its assets coming from interbank loans. Finally, the

structure of the outside sector can also result in contagion through other mechanisms beyond

interbank lending.

3.1 Contagion through the outside sector

Cifuentes et al. (2005) are the first to introduce a complementary mechanism of contagion,

which occurs through assets held in the outside sector. Their model is similar to that of

Eisenberg and Noe (2001), where banks engage in interbank lending and have an operating

cash flow obtained from outside assets. They extend the model by distinguishing between

liquid and illiquid outside assets, where liquid assets have a constant price, while the price

of illiquid assets depends on downwards-sloping inverse demand function d−1. Additionally,

banks are beholden to a minimum capital ratio, so the ratio of their net worth to the market

value of their assets must be above a certain threshold r∗. Below this threshold, they are

required to sell their assets to prevent being overleveraged.

When a bank experiences a liquidity shock, the equilibrium solution involves a vector of

payments x as discussed before, but also a vector of sales of the illiquid asset s, and price p

of the illiquid asset. This solution is such that x is the clearing vector of payments solved in
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the fictitious default algorithm, s is the minimum amount of illiquid asset sold to satisfy the

minimum capital ratio, and p is the general equilibrium price obtained by p = d−1(
∑

i si).

In this context, when a bank defaults, it has to sell off all its assets, including their

illiquid ones. This increases the demand of illiquid assets, pushing down its price. As the

price of these assets are driven down, other banks that hold these assets face a reduction in

their net worth and are in violation their minimum capital ratio. If these other banks do

not have sufficient liquidity buffers, they will be made to sell their illiquid assets too. But

this further pushes down the price of illiquid assets, which induces more banks to sell their

illiquid assets. This downward spiral of prices and selling of illiquid assets en-masse is known

as a “fire sale”. This large devaluation of illiquid assets caused by the initial default of the

affected bank can result in other banks defaulting, which is how contagion spreads through

correlated portfolios in the outside sector.

3.2 Structure of correlated portfolios

We have studied a new theoretical model which shows that correlated portfolios of outside

assets can result in contagion. Knowing this, we are interested in studying what correlation

structures arise between banks’ portfolios.

Acharya and Yorulmazer (2007) develop a theoretical model where banks have an in-

centive to correlate portfolios due to bailout policies. Banking regulators have historically

intervened in times of financial crisis using the “too-big-to-fail” principle, which argues that

some banks are too large and interconnected to be allowed to fail. They extend this to cor-

related bank failures to create the “too-many-to-fail” problem. This is where regulators find

it optimal to bail out banks when the number of bank failures is large, but when the number

of bank failures is small, it is optimal for surviving banks to acquire failed banks. In their

two-period model, there are two banks and two industries. In the first period, both banks

each choose one industry to invest in. In the second period, if a bank’s return to investments

is high, it can invest in the next period — otherwise it defaults. The “too-many-to-fail”

principle applies here, so whenever both banks default, they will be bailed out if the bailout

subsidy is less than the cost of liquidating all their assets to non-financial institutions. But

if only one bank defaults, the failed bank’s assets are sold to the surviving bank, minus an

equity share taken by the regulator. In this context, whenever the cost of liquidating banks’

assets is high enough, the regulator will bail out both banks when they fail together. Here, if

the subsidy received when being bailed out is higher than the gain in value associated with

buying out a failed bank, there is incentive for banks to herd their investments. This finding

is robust when extended to n banks. Hence, we see that the “too-many-to-fail” principle
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results in greater correlation in investments. They also extend their model to study how the

“too-big-to-fail” principle impacts portfolio correlation structures. They introduce hetero-

geneity in bank sizes, with one big bank and one small bank. Based on the “too-big-to-fail”

principle, if only the big bank defaults, regulators will bail it out given that the cost of liq-

uidating its assets is higher than the cost of the bailout subsidy. On the other hand, if only

the small bank defaults, the regulators will sell its assets to the big bank. In this modified

model, the small bank has no benefits from being the only survivor, since it is unable to

acquire the big bank. Hence, it has an incentive to herd its investments with the large bank.

However, the big bank is guaranteed to be bailed out if it fails, so it has no herding incentive.

Instead, it prefers to differentiate its portfolio so they can survive to take advantage of the

discount of purchasing the smaller bank. Thus, based on the “too-big-to-fail” principle, we

see that big banks prefer to differentiate themselves from small banks, while small banks

prefer to herd with large banks.

Bräuning and Fillat (2019) studies the portfolios of large banks, and the effects of fi-

nancial regulation on their degree of correlation. They are specifically interested in how

the diversification requirements uniquely applied to large banks in the form of stress tests

affects their portfolio correlation. To do this, they analyse how large US banks’ portfolios

changed after the implementation of stress-testing in the 2010 Dodd-Frank Act. A previous

theoretical model developed by Wagner (2010) finds that when banks focus on increasing

diversification, their portfolios will be more correlated. Bräuning and Fillat (2019) obtain

similar empirical findings, with the degree of similarity between banks’ portfolios increasing

and the distribution of portfolios narrowing as stress-testing requirements were put in place.

They posit that this is due to banks adjusting their portfolios when they perform poorly on

the stress test, causing them to diversify and hold a similar portfolio to banks that performed

better on the stress test.

Elliott et al. (2021) builds on this work by studying the relationship between the interbank

network structure and correlated portfolios. They find empirical evidence from the German

banking system: banks which are linked in the interbank network also tend to have correlated

portfolios. They then introduce a theoretical model that rationalises this behaviour. In

their three-period model, there are n banks and n types of risky investments. In the first

period, banks borrow from non-financial institutions, and is obliged to repay them in the

last period. In the second period, banks each choose a portfolio of investments and form

interbank claims on each others’ portfolios. In the final period, if banks are unable to

repay their debts from the first period, they default, inducing a default cost. There is

limited liability, so when a bank defaults, it only has to pay its market value to its debtors.

They model shocks in the system as a drop in the return of investment types with some
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probability r. Shocks are small with probability p and large with probability 1 − p, with

large shocks being relatively rare. All shocks are larger than the value of a single bank, but

with risk sharing through diversification of portfolios and counterparty exposures, banks can

withstand small shocks. On the other hand, large shocks are such that at least one bank must

default for any given network and portfolio structure. In this model of shocks, the socially

efficient network structure is such that banks have no overlap in their portfolios, and the

interbank claims network is comprised of d clusters, with greater interconnectedness within

clusters and lesser interconnectedness between clusters. This way, if a small shock occurs,

risk-sharing prevents banks from defaulting, and if a large shock occurs, it is isolated to one

cluster. However, banks have an incentive to deviate from this socially efficient network and

correlate their portfolios with their counterparties in the interbank network due to limited

liability. When a bank’s counterparties default on their debt obligations, the bank has to

bear the counterparties’ default cost if they survive. By correlating portfolios to fail together,

they do not have to bear this default cost because their equity value has already gone to

zero. Although this increases the bank’s risk of default, it still results in a higher expected

utility, since they do not have to internalise negative externalities from the failure of other

banks. This phenomena is known as “risk-shifting”, and increases the contagion risk in the

banking system.

We see both theoretical and empirical support for the idea that banks correlate their

portfolios with their counterparties, and that large banks tend to correlate their portfolios.

We also have a theoretical prediction that in the presence of systemic risk, small banks prefer

to herd with banks of any size to improve their chances of getting bailed out, resulting in more

correlated portfolios. To validate this theory, we are interested in empirically observing the

behaviour of banks when contagion risk increases. Kabir (2017) analyses shifts in portfolio

herding behaviour as a result of the 2008 financial crisis, and finds an increase in intentional

herding of commercial banks in periods of higher volatility. Luengnaruemitchai and Wilcox

(2004) finds similar herding behaviour in the volatile US banking market during the 1980s.

Barron and Valev (2000) specifically differentiates between small and large banks during

this same volatile banking period, and finds that the international lending patterns for small

banks follows that of large banks. Thus, we also have empirical evidence supporting the idea

that small banks prefer to herd when faced with high systemic risk.
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3.3 Structure of interbank network and correlated portfolios af-

fecting contagion

We now examine both how the interbank network topology affects this new mechanism of

contagion through correlated portfolios, and how the structure of correlated portfolios as

discussed in Section 3.2 affects probability and extent of contagion.

In their introduction of contagion through outside assets, Cifuentes et al. (2005) also ran

simulations of the effects of a bank default on a network of identical banks, to study the

parameters which affect contagion through correlated portfolios. They find that beyond a

certain threshold of liquidity buffers held in each bank, no contagion through the outside

sector is observed. They also observe that contagion through correlated portfolios is min-

imised in either the empty network or the complete network, and maximised when each bank

has an intermediate number of connections. This is in line with what we have concluded in

Section 2.3.

Gai and Kapadia (2010) studied the effect of one affected bank failing at random conta-

gion in a Poisson network, in the presence of asset price contagion. They assume that initial

assets are comprised of 80% outside assets and 20% interbank assets, and there is one illiquid

outside asset that all banks hold. When a bank defaults, all its outside assets are sold in the

market, following the asset price equation p = e−αx. They find that the incorporation of this

additional mechanism of contagion increases the upper threshold of average degree beyond

which probability of contagion is close to zero. It also significantly increases the extent of

contagion when it occurs, especially for networks with a low average degree. Even with

the incorporation of liquidity risk, the robust-yet-fragile property continues to be observed,

with complete and empty networks having the lowest probability of contagion, but complete

networks spreading contagion the most.

Shen and Li (2020) examined the effect of a liquidity shock to a random affected bank

on contagion behaviour in regular and core-periphery networks, in the presence of correlated

portfolios. In their simulations, instead of holding one outside asset, banks hold a portfolio

of securities, which they sell when they face bankruptcy to repay its creditors. They vary

both degree of interconnectedness and degree of portfolio overlap to study how contagion

behaviour evolves with these parameters. In their analysis of regular networks, they find

that in the presence of correlated portfolios, the severity of contagion in sparsely connected

networks sharply increases, corroborating results from Gai and Kapadia (2010). For all regu-

lar financial networks, they find that as degree of portfolio overlap increases, the probability

of contagion first increases, then decreases. Initially, as degree of overlap increases, a new

channel of contagion through correlated portfolios becomes possible, increasing probability
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of contagion. However, when degree of overlap is high enough, no bank is too affected by

the devaluation of any particular security.

In their analysis of core-periphery networks, they study a shock to the core bank and

to a random periphery bank separately. When the core bank is shocked, the probability

and extent of contagion increases monotonically as the size of the initial shock increases.

When the initial shock is small, as degree of portfolio overlap increases, we see that the

probability of contagion first increases, then decreases. When degree of portfolio is overlap

is low, although periphery banks have very little capital buffer to withstand a devaluation in

securities, periphery banks are unlikely to share common securities with other banks, which

limits the probability of contagion. As portfolio overlap increases, this channel of contagion

is more significant, and periphery banks are more likely to be affected by contagion and

spread the contagion to other periphery banks. When portfolio overlap is high, losses from

devaluation of securities is evenly spread across all periphery banks, and hence contagion

is again limited. When a random periphery bank is shocked, as degree of portfolio overlap

increases, the probability of contagion first increases, then decreases. The probability of con-

tagion never reaches zero, unlike in the complete network case, because of the susceptibility

of periphery banks to devaluation of securities.

Overall, the addition of contagion through correlated portfolio increases systemic risk.

The relative susceptibility of different interbank network structures to contagion remains

consistent to the results we have obtained in Section 2.3. We also find that as degree of

portfolio overlap increases, risk of contagion first increases, then decreases. When portfolio

overlap is low, risk of contagion is also low, due to the lack of correlation to transmit

shocks. When portfolio overlap is high, risk of contagion is also low due to the risk-sharing

effects of greater financial integration. However, due to the rarity of financial crises and

idiosyncracies between banks, there is limited empirical data on the effect of correlated

portfolios on contagion.

4 Relative impact of mechanisms of contagion

We see that the addition of contagion results in default cascades occuring more frequently

and with higher severity. Consequently, we are also interested in studying the relative con-

tributions of the two contagion mechanisms to overall systemic risk.

Mikropoulou and Vouldis (2023) explore this by conducting simulations of shocks on the

interbank market and studying how the magnitude of the shock impacts the relative risk

from different contagion mechanisms. They use the terminology of “direct” contagion for

contagion through interbank lending, and “indirect” contagion for contagion through corre-
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lated portfolios. They model banks as having interbank exposures to one another, exposures

to outside sectors, and liquid instruments as a buffer. In their simulation, they construct

their interbank market network and portfolio position using actual bilateral exposures from

a supervisory dataset on large euro area banks. They observe that the reconstructed network

has heterogeneity in bank size, and exhibits a core-periphery structure. Two different kinds

of shocks are studied: a liquidity shock to banks, and a drop in the value of assets in an out-

side sector. They find that in both cases, as the size of the shock increases, indirect contagion

increases to a larger extent than direct contagion. There are observed inflection points where

indirect contagion sharply rises beyond a certain threshold for the size of shock. Overall,

we find that when shocks are large, the risk from correlated portfolios is greater than from

interbank links. We attempt to develop a theoretical model to explain this phenomenon.

4.1 Theoretical model for relative risk of contagion

We have a set of banks, N = {1, . . . , n}. There are two types of banks: k big banks and n−k

small banks. Interbank lending exposures exhibit a core-periphery structure as described in

Section 2.3. The set of large banks C forms the core clique, the set of small banks P is an

independent set that forms the periphery, and each periphery bank is connected to at least

one core bank.

Banks also hold a portfolio comprised of assets from a set of different sectors of the

economy S = {1, . . . , s}. Here, sectors represent geographical regions or business sectors.

Given the small size of periphery banks, we model their portfolios to be undiversified, and

they each hold assets from only one sector. Notice that periphery banks in the same sector

have perfectly correlated portfolios, and periphery banks in different sectors have no portfolio

overlap. In Section 3.2, we observe that banks prefer to herd with their counterparties, and

small periphery banks prefer to herd with large core banks. We assume that banks have

no gains from purchasing the assets of defaulted banks, so core banks prefer to herd with

their periphery bank counterparties too. We know that large banks herd indirectly with

one another through diversifying their portfolio. Hence, we assume that core banks do not

deliberately correlate their portfolios, and their portfolio overlap arises from having periphery

bank counterparties in the same sector. Overall, the portfolio of periphery banks consists

of assets from one sector, and the portfolio of core banks consists of assets from each sector

their periphery bank counterparties are in.

Like Gai and Kapadia (2010), we assume that 80% of a bank’s initial assets are held

in the outside sectors, and the other 20% are interbank assets. Beyond a bank’s size and

exposure to different sectors, we assume that banks are ex-ante identical. This allows us to
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Figure 3: Our model of the network structure.

make various simplifying assumptions. We let the size of interbank deposits between banks

of the same type be the same. We can define λ such that

λ =
size of interbank deposits from periphery to core bank

size of interbank deposits between core banks
.

Suppose that the n−k periphery banks be evenly split into s sectors, so each sector has n−k
s

periphery banks. We also assume that sector has 2 core banks exposed to it, and the n−k
s

periphery banks in the sector are evenly divided to be counterparties of these 2 core banks.

A graphical representation of our model is in Figure 3 above — for clarity, we only show the

periphery banks in sector m. With these assumptions, we have that s ≥ k
2
, and each core

bank is linked to n−k
k

periphery banks.

As in Elliott et al. (2021), the units of assets available in each sector is normalised to

1. For each sector, let the proportion of assets that periphery banks hold be ℓ, and the

remaining 1 − ℓ is held by core banks. We assume that these assets are evenly distributed

between banks of the same type. Hence, each periphery bank in sector m will hold ℓ · s
n−k

proportion of the assets, and each core bank will hold 1−ℓ
2

proportion of the assets.

We suppose that periphery banks have sufficient liquidity to withstand a drop in value

of proportion β, and core banks have sufficient liquidity to withstand a drop in value of

proportion τ , beyond which they fail. As in Gai and Kapadia (2010), we assume zero

recovery from failed banks. We also use their inverse demand function, so the price of the

asset from sector m, denoted as pm, is given by

pm = e−αmxm

where xm > 0 is the fraction of assets from sector m that have been sold on the market, and

αm > 0 is calibrated such that the asset price pm falls by proportion β when β of the assets

in sector m have been sold. Thus, firms can raise liquidity by selling xm assets, to obtain

L = xme
−αmxm .
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The shock to the system is modelled as in Mikropoulou and Vouldis (2023), where there is

an increase in liquidity demand to each bank in sector m of size − ln(1−δ)
αm

· s
n−k

, with δ ≥ 5
4
β.

Since periphery banks are undiversified, they can only generate liquidity by selling their

assets from sector m. Our magnitude of the initial shock is chosen such that when all n−k
s

periphery banks simultaneously sell sufficient assets at original prices to cover the increase

in liquidity demand, this results in a drop in price of asset by δ. Since 80% of assets are held

in the outside sector, a drop in asset price of at least 5
4
β results in a drop in bank value of

at least β. All periphery banks exposed to this sector fail, so they default on their debts to

core banks and sell all their assets.

Contagion of this initial shock to one of the core banks i in sector m through interbank

lending is of proportion

Cinterbank =
0.2

ti
· (n− k)λ

(n− k)λ+ k2
,

where ti is the number of sectors the core bank i is exposed to. The second term represents

the proportion of i’s interbank assets held by periphery banks.

Contagion through correlated portfolios is caused by all the periphery banks selling their

assets, which results in a further drop in pm. Thus, the contagion effect to core bank i is

Ccorrelated =
0.8

ti
e−αmℓ.

On the other hand, we assume that as in Bräuning and Fillat (2019), core banks have

to meet diversification requirements, and prefer to generate liquidity by selling their assets

from other sectors. To meet the liquidity demand above, core bank i sells an equal amount

of assets in all other sectors, generating a drop in prices ε, where

1− ε = e
−αm

(
− ln(1−δ)

αm
· s
n−k

· 1
ti

)
= (1− δ)

s
n−k

· 1
ti .

Here, we notice that as the size of the initial shock increases, the fall of asset prices in other

sectors ε increases. When the initial shock is large enough such that ε = β, this causes

periphery banks in other sectors exposed to core bank i to fail, which by our calibration of

αm is when

β = − ln(1− δ)

αm

· s

n− k
· 1
ti
,

or equivalently, when the initial liquidity shock to each bank in sector i is multiplied by a

factor of ti. This is actually an upper bound — if both core banks in sector m are also the

core banks in another sector v, the combined sales of their assets results in a fire sale much

sooner.
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In order for the core bank to stay liquid as periphery banks in the first sector fails, the

core bank’s liquidity buffer should be such that

τ ≥ 0.2

ti
· (n− k)λ

(n− k)λ+ k2
+

0.8

ti
e−αmℓ.

The core bank is less susceptible to contagion when the number of sectors it spreads its

assets across ti is high, or the proportion of its claims in periphery banks are low, or the

proportion of assets held by periphery banks ℓ is low. In order for the core bank to stay

liquid as periphery banks in all sectors fail, the requirement is now

τ ≥ 0.2 · (n− k)λ

(n− k)λ+ k2
+ 0.8e−αmℓ.

Our theoretical model provides justification for inflection points where contagion through

correlated assets sharply rises, as observed in Mikropoulou and Vouldis (2023). When faced

with a liquidity shock in a sector, core banks attempt to dissipate the shock by selling assets

in other sectors to raise liquidity. They are subject to diversification requirements, so they

sell equal amounts of assets from each sector they are exposed to. If the shock is small, this

results in no further bank failure. However, when the shock is large, this results in a fire

sale in many sectors all at once, due to many periphery banks defaulting through indirect

contagion.

5 Conclusion

We have provided an overview of contagion in financial networks, through mechanisms of

information revelation, interbank lending and correlated portfolios. We examined both the-

oretical models of these mechanisms, and the empirical evidence of their existence. We

find empirical evidence supporting the idea that contagion through information is a limited

concern.

For contagion through interbank lending, we discussed the clearing mechanism applied

to solve defaults in an interconnected system. We review the types of network topologies

that minimise contagion. For small shocks, network topologies that maximise average degree

minimise direct contagion, while for large shocks, network topologies that minimise size of

connected components minimise direct contagion. We then explored empirical evidence on

the structure of network topologies, and the theoretical models of network formation justify-

ing observed structures. Interbank networks exhibit a core-periphery network, characterised

by a highly interconnected core and and a less-connected periphery. Various theoretical
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models of core-periphery formation exist, which all use heterogeneities – in bank size, ac-

cess to information or to investment opportunities – to justify the existence of a core and a

periphery.

For contagion through correlated portfolios, we mention fire sales, which is where large

increases in supply of illiquid assets drives down its price, reducing the net worth of other

banks. We also look at portfolio correlation structures and find that indirect contagion

is minimised portfolio correlation is very small and very large. Social welfare is maximised

when portfolio correlation is very small. We then explored empirical evidence on the structure

portfolio correlation, and theoretical justifications. We find that banks prefer to correlate

portfolios with their interbank lending counterparties, and small banks to correlate portfolios

with large banks. Large banks are subject to diversification requirements, which results in

correlated portfolios.

Finally, we study the relative contributions of contagion from interbank lending and

correlated portfolios when faced with a liquidity shock. We discuss a simulation which

shows that as the size of the liquidity shock grows, indirect contagion increases to a larger

extent than direct contagion, with observed inflection points where contagion rises sharply.

Our novel contribution is creating a simple theoretical model that justifies this behaviour

using diversification requirements and the core-periphery structure of networks.

Further work here includes removing simplifying assumptions. We are interested in mod-

elling sectors of different sizes, or an uneven number of banks in each sector. The bounds we

obtained above in our model of fire sales are also overestimated. For mathematical simplicity,

we only took into account the price of the asset when deriving a bound on the net worth of

a periphery bank. A more sophisticated model would find an exact solution for net worth

as assets are sold, so both assets held and price decreases. Greenwood et al. (2015) has also

created a measure of a bank’s fragility, “systemicness”, which is associated with the quantity

of illiquid assets the bank holds, and the leverage of banks which also hold that asset. It

would be interesting to enrich our theoretical model by varying the leverage of banks that

hold each asset, and seeing its effects on the spread of indirect contagion.
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